Machine Learning

Foundations

Feature Engineering

A critical part of the successful Machine Learning project is coming up with a good set of
features to train on. This process is called feature engineering, and it involves three steps:
feature transformation (transforming the original features), feature selection (selecting the most
useful features to train on), and feature extraction (combining existing features to produce more
useful ones). In this notebook we will explore different tools in Feature Engineering.

Objectives

After completing this lab you will be able to:

® Understand the types of Feature Engineering
= Feature Transformation
© Dealing with Categorical Variables
© One Hot Encoding
© Label Encoding
© Date Time Transformations
= Feature Selection
® Feature Extraction using Principal Component Analysis

Setup
For this lab, we will be using the following libraries:

® pandas for managing the data.

* numpy for mathematical operations.

® seaborn for visualizing the data.

* matplotlib for visualizing the data.

e plotly.express for visualizing the data.

e sklearn for machine learning and machine-learning-pipeline related functions.

Installing Required Libraries

The following required modules are pre-installed in the Skills Network Labs environment.
However if you run this notebook commands in a different Jupyter environment (e.g. Watson
Studio or Ananconda) you will need to install these libraries by removing the # sign before

Imamba in the code cell below.

ALL Libraries required for this lab are Llisted below.
Imamba install -qy pandas==1.3.4 numpy==1.21.4 seaborn==0.9.0 matplotlib==3.5.0 scikit
Note: If your environment doesn't support "!mamba install", use "!pip install"

Could not solve for environment specs
The following packages are incompatible

quires

— matplotlib 3.5.0 1is installable with the potential options
— matplotlib [2.2.2]3.1.2]...|3.5.3] would require

L pygt [|>=5.6,<6.0a0] with the potential options
F— pygqt 5.6.0 would require
L gt 5.6.* with the potential options
— gt 5.6.2 would require
— gst-plugins-base >=1.12.2,<1.13.0a0 , which requires
L gstreamer [>=1.12.2,<1.13.0a0 |>=1.12.4,<1.13.0a@], which re

L— glib »>=2.53.6,<3.0a0 , which can be installed;
— openssl 1.0.* , which can be installed;
— gt 5.6.2 would require
— glib >=2.53.6,<3.0a0@ , which can be installed;
— openssl >=1.0.2n,<1.0.3a , which can be installed;
— gt 5.6.3 would require
F— glib »>=2.56.1,<3.0a0 , which can be installed;
L openssl >=1.0.20,<1.0.32a , which can be installed;
— gt 5.6.3 would require
— glib >=2.56.1,<3.0a0 , which can be installed;
— openssl >=1.0.2p,<1.0.3a , which can be installed;
L gt [5.6.3]5.9.7] would require
— fontconfig >=2.13.0,<3.020 with the potential options
— fontconfig 2.14.2 would require
L freetype >=2.12.1,<3.0a0 , which can be installed;
— fontconfig [2.13.0]2.13.1] would require
L libuuid >=1.0.3,<2.0a0 , which can be installed;
— fontconfig 2.14.1 would require
L libuuid >=1.41.5,<2.0a0 , which can be installed;
- fontconfig 2.14.1 would require
- freetype >=2.10.4,<3.0a0 , which can be installed;
— glib >=2.56.2,<3.0a0 , which can be installed;
— pyqgt [5.15.10|5.15.7[5.9.2] would require
L python >=3.10,<3.11.0a0 , which can be installed;
— pygt [5.15.10|5.15.7] would require
L python >=3.11,<3.12.0a0 , which can be installed;
— pyqgt 5.15.10 would require
L python >=3.12,<3.13.020 , which can be installed;
— pygt [5.15.10|5.15.7]5.9.2] would require
L python >=3.8,<3.9.020 , which can be installed;
— pygt [5.15.10|5.15.7]5.9.2] would require
L— python >=3.9,<3.10.020 , which can be installed;
— pygt 5.15.7 would require
L gtwebkit 5.*% , which requires
L glib >=2.69.1,<3.0a0 , which can be installed;
— pygt [5.6.0|5.9.2] would require
L python >=2.7,<2.8.0a0 , which can be installed;
— pyqgt [5.6.0|5.9.2] would require
L python >=3.5,<3.6.0a0 , which can be installed;
— pygt [5.6.0|5.9.2] would require
L python >=3.6,<3.7.0a0 , which can be installed;
— pyqgt 5.9.2 would require
L gt [5.9.% |>=5.9.6,<5.10.0a0] with the potential options
F— gt [5.6.3]5.9.7], which can be installed (as previously explained);
F— gt 5.9.6 would require
glib >=2.56.1,<3.020 , which can be installed;
openssl 1.0.* , which can be installed;
[5.9.4]5.9.5] would require
openssl 1.0.* , which can be installed;

|
|
L

= T

 matplotlib [3.5.0]3.5.1|...]3.8.8] would require

| - python >=3.10,<3.11.0a0 , which can be installed;

- matplotlib [3.1.1]3.1.2]...]3.7.2] would require

| L python »>=3.8,<3.9.0a0 , which can be installed;

L matplotlib [3.3.4]3.4.2]...]|3.8.0] would require

L python >=3.9,<3.10.0a0 , which can be installed;

— numpy 1.21.4 does not exist (perhaps a typo or a missing
— seaborn 0.9.0 1is installable with the potential options

- seaborn ©.9.8 would require

| L matplotlib >=1.4.3 with the potential options
| - matplotlib [2.2.2]3.1.2]...]3.5.3], which can be

explained);

| - matplotlib [3.5.8]3.5.1]...]3.8.0], which can be

explained);

| - matplotlib [3.1.1]3.1.2]...]3.7.2], which can be

explained);

channel);

installed
installed

installed

(as previously
(as previously
(as previously

(as previously

| - matplotlib [3.3.4]3.4.2]...|3.8.0], which can be installed
explained);
— matplotlib [2.0.2]2.1.0]...]2.2.3] would require
L python >=2.7,<2.8.0a0 , which can be installed;
— matplotlib [2.0.2]2.1.0]...]3.0.0] would require
L python >=3.5,<3.6.0a0 , which can be installed;
— matplotlib [2.0.2]2.1.0]...|3.3.4] would require
L python >=3.6,<3.7.0a0 , which can be installed;
— matplotlib [2.2.3]3.0.0]...]3.1.2] would require
L pyqt 5.9.* , which can be installed (as previously explained);
— matplotlib [3.6.2]3.7.1]3.7.2|3.8.0] would require
L python >=3.11,<3.12.020 , which can be installed;

L python
— seaborn 0.

L seaborn 0.
L python

Imamba install -qy openpyxl

would require
.6,<3.7.020 , which can be installed.

— matplotlib 3.8.0 would require
L python >=3.12,<3.13.020 , which can be installed;
— seaborn ©.9.0 would require
>=2.7,<2.8.0a0 , which can be installed;
9.0 would require
- python >=3.5,<3.6.0a0 , which can be installed;
9.0
>=3

Preparing transaction: ...working... done
Verifying transaction: ...working... done
Executing transaction: ...working... done

Surpress warnings from using older version of sklearn:
def warn(*args, **kwargs):

pass

import warnings
warnings.warn = warn

import pandas as pd
import numpy as np

import matplotlib.pyplot as plt
%matplotlib inline

import seaborn as sns

import plotly.express as px

from sklearn.preprocessing import StandardScaler

from sklearn.decomposition import PCA

Reading and understanding our data

For this lab, we will be using the airlines_data.xlsx file, hosted on IBM Cloud object. This dataset
contains the prices of flight tickets for various airlines between the months of March and June of
2019 and between various cities. This dataset is often used for prediction analysis of the flight
prices which are influenced by various factors, such as name of the airline, date of journey,
route, departure and arrival times, the source and the destination of the trip, duration and other
parameters.

In this notebook, we will use the airlines dataset to perform feature engineering on some of its
independent variables.

Let's start by reading the data into pandas data frame and looking at the first 5 rows using the
head() method.

data = pd.read_excel('https://cf-courses-data.s3.us.cloud-object-storage.appdomain.clc
data.head()

Airline Date_of Journey Source Destination Route Dep_Time Arrival_Time Duration Total_St

BLR
0 IndiGo 24/03/2019 Banglore New Delhi - 22:20 01:10 22 Mar ~ 2h 50m non-¢
DEL

CCu
- IXR
1/05/2019 Kolkata Banglore — BBI 05:50 13:15 7h 25m 2 s

—

BLR

Air
India

DEL
LKO

9/06/2019 Delhi Cochin - 09:25 04:25 10 Jun 19h 2 s
BOM

—

COK

Jet
Airways

Cccu

—

3 IndiGo 12/05/2019 Kolkata Banglore NAG 18:05 23:30 5h 25m 1

—

BLR

BLR

—

4 IndiGo 01/03/2019 Banglore New Delhi NAG 16:50 21:35 4h45m 1

DEL

<« G 4

By using the info function, we will take a look at the types of data that our dataset contains.

data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10683 entries, @ to 10682
Data columns (total 11 columns):

Column Non-Null Count Dtype
@ Airline 10683 non-null object
1 Date_of_Journey 10683 non-null object
2 Source 10683 non-null object
3 Destination 10683 non-null object
4 Route 10682 non-null object
5 Dep_Time 10683 non-null object
6 Arrival Time 10683 non-null object
7 Duration 10683 non-null object
8 Total_Stops 10682 non-null object
9 Additional_Info 10683 non-null object
10 Price 10683 non-null inté64

dtypes: int64(1), object(10)
memory usage: 918.2+ KB

As we see from the output above, we mostly have object data types, except for the 'price’

column, which is an integer.

The describe() function provides the statistical information about the numerical variables. In

our case, it is the 'price’ variable.

data.describe().T

count mean std min 25% 50% 75% max

Price 10683.0 9087.064121 4611.359167 1759.0 5277.0 8372.0 12373.0 79512.0

Next, we will check for any null values.

data.isnull().sum()

Airline
Date_of_Journey
Source
Destination
Route

Dep_Time
Arrival Time
Duration

Total Stops
Additional_Info
Price

dtype: int64

OO R OOORFRPR OO

Now that we have found some null points, we need to either remove them from our dataset or
fill them with something else. In this case, we will use fillna() and method='ffill' , which
fills the last observed non-null value forward until another non-null value is encountered.

data = data.fillna(method="ffill")

Feature Transformation

Feature Transformation means transforming our features to the functions of the original
features. For example, feature encoding, scaling, and discretization (the process of transforming
continuous variables into discrete form, by creating bins or intervals) are the most common

forms of data transformation.

Dealing with Categorical Variables

Categorical variables represent qualitative data with no apparent inherent mathematical
meaning. Therefore, for any machine learning analysis, all the categorical data must be
transformed into the numerical data types. First, we'll start with ‘Airlines' column, as it contains
categorical values. We will use unique() method to obtain all the categories in this column.

data['Airline’].unique().tolist()

["IndiGo"',
'Air India‘',
'Jet Airways',
'SpiceJet’,
'Multiple carriers’,
'GoAir',
'Vistara',
"Air Asia',
'Vistara Premium economy’,
'Jet Airways Business',
'Multiple carriers Premium economy',
"Trujet']

From the above list, we notice that some of the airline names are being repeated. For example,
‘Jet Airways' and 'Jet Airways Business'. This means that some of the airlines are subdivided into
separate parts. We will combine these ‘two-parts' airlines to make our categorical features more

consistent with the rest of the variables.

Here, we will use the numpy where() function to locate and combine the two categories.

data['Airline'] np.where(data['Airline']=="'Vistara Premium economy', 'Vistara', datc
data['Airline'] = np.where(data['Airline']=="Jet Airways Business', 'Jet Airways', dat

The code above is using the NumPy library to modify the 'Airline' column in a DataFrame

named data . Let's break down the code:

data['Airline'] = np.where(data['Airline']=="Jet Airways Business', 'Jet
Airways', data['Airline'])

Here's what each part of the code is doing:

1. data['Airline'] : This part references the 'Airline' column in the DataFrame data . It

selects the entire column.

2. np.where(...) : Thisis a NumPy function that is used for conditional assignment. It has

the following structure:

® The first argument is the condition to be checked (data['Airline’]=="Jet
Airways Business').
* The second argument is the value to be assigned when the condition is true (*Jet
Airways"').
® The third argument is the value to be assigned when the condition is false
(data['Airline'] - i.e. keep the original value).
3. The entire line effectively says: "If the value in the 'Airline' column is 'Jet Airways Business',

replace it with 'Jet Airways'; otherwise, keep the original value."

So, after this line of code executes, the 'Airline’ column in the DataFrame data will have the
values modified according to the specified condition. This is a common technique in data
manipulation to clean or transform data based on certain conditions.

Exercise 1

In this exercise, use np.where() function to combine 'Multiple carriers Premium economy'
and 'Multiple carriers' categories, like shown in the code above. Print the newly created list
using unique().tolist() functions.

Enter your code and run the cell
data['Airline’'] = np.where(data['Airline’']=="Multiple carriers Premium economy', 'Multi
data["Airline’].unique().tolist()
["IndiGo"',

'Air India‘',

'Jet Airways',

'Spicelet’,

'Multiple carriers',

'GoAir',

'Vistara',

'Air Asia’,

'Vistara Premium economy’,

'Jet Airways Business',

"Trujet']

» Solution (Click Here)

One Hot Encoding

Now, to be recognized by a machine learning algorithms, our categorical variables should be
converted into numerical ones. One way to do this is through one hot encoding. To learn more
about this process, please visit this documentation.

We will use, get_dummies() method to do this transformation. In the next cell, we will
transform 'Airline’, 'Source', and 'Destination’ into their respective numeric variables. We will put
all the transformed data into a 'datal’ data frame.

datal = pd.get _dummies(data=data, columns = ['Airline', 'Source', 'Destination’'])

datal.head()

Date_of Journey

0 24/03/2019
1 1/05/2019
2 9/06/2019
3 12/05/2019
4 01/03/2019

5 rows x 30 columns

< G

Below, we will compare our original data frame with the transformed one.

data.shape

(10683, 11)

datal.shape

(10683, 30)

Route

BLR

—

DEL

Cccu
- IXR
- BBI

—

BLR

DEL

LKO

BOM

COK

Cccu

NAG

BLR

BLR

NAG

DEL

Dep_Time

22:20

05:50

09:25

18:05

16:50

Arrival Time

01:10 22 Mar

13:15

04:25 10 Jun

23:30

21:35

Duration

2h 50m

7h 25m

19h

S5h 25m

4h 45m

Total_Stops Additional_Info

non-stop

2 stops

2 stops

1 stop

1 stop

No info

No info

No info

No info

No info

Price

3897

7662

13882

6218

13302

As we can see, we went from 11 original features in our dataset to 38. This is because Pandas

get_dummies() approach when applied to a column with different categories (e.g. different

airlines) will produce a new column (variable) for each unique categorical value (for each unique

airline). It will place a one in the column corresponding to the categorical value present for that

observation.

Exercise 2

In this exercise, use value_counts() to determine the values distribution of the 'Total_Stops'

parameter.

Enter your code and run the cell
data['Total Stops'].value_counts()

1 stop 5625
non-stop 3491
2 stops 1520
3 stops 45
4 stops 1

Name: Total Stops, dtype: int64

» Solution (Click Here)

Label Encoding

Since 'Total_Stops' is originally a categorical data type, we also need to convert it into numerical
one. For this, we can perform a label encoding, where values are manually assigned to the

corresponding keys, like "0" to a "non-stop", using the replace() function.

datal.replace({"non-stop":0,"1 stop":1,"2 stops":2,"3 stops":3,"4 stops":4},inplace=Tr
datal.head()

Date_of Journey Route Dep_Time Arrival_Time Duration Total_Stops Additional_Info Price

BLR
0 24/03/2019 - 22:20 01:10 22 Mar ~ 2h 50m 0.0 Noinfo 3897
DEL

ccu
- IXR
1 1/05/2019 - BBI 05:50 13:15 7h 25m 2.0 No info 7662

BLR

DEL

LKO
2 9/06/2019 - 09:25 04:25 10 Jun 19h 2.0 No info 13882
BOM

COK
ccu
3 12/05/2019 NAG 18:05 23:30 5h 25m 1.0 Noinfo 6218
BLR
BLR
4 01/03/2019 NAG 16:50 21:35 4h45m 1.0 No info 13302

DEL

5 rows x 30 columns

< G

Date Time Transformations

Transforming the '‘Duration’ time column

Here, we will take a closer look at the Duration variable. Duration is the time taken by a plane
to reach its destination. It is the difference between the Dep Time and Arrival Time .In our
dataset, the Duration is expressed as a string, in hours and minutes. To be recognized by

machine learning algorithms, we also need to transform it into numerical type.

The code below will iterate through each record in Duration column and split it into hours
and minutes, as two additional separate columns. Also, we want to add the Duration_hours
(in minutes) to the Duration_minutes column to obtain a Duration_Total mins time, in
minutes. The total duration time column will be useful feature for any regression type of
analysis.

duration = list(datal['Duration’])
for i in range(len(duration)) :
if len(duration[i].split()) != 2:
if 'h' in duration[i]

duration[i] = duration[i].strip() + ' @m’
elif 'm' in duration[i]
duration[i] = '@h {}'.format(duration[i].strip())
dur_hours = []
dur_minutes = []

for i in range(len(duration)) :
dur_hours.append(int(duration[i].split()[@][:-1]))
dur_minutes.append(int(duration[i].split()[1][:-1]))

datal['Duration_hours'] = dur_hours

datal['Duration_minutes'] =dur_minutes

datal.loc[:, ‘Duration_hours'] *= 60

datal['Duration_Total_mins']= datal['Duration_hours']+datal['Duration_minutes']

This code above is designed to process a column named 'Duration’ in a DataFrame (datal).
The 'Duration’ column contains time durations in the format "Xh Ym" where X is the number of
hours and Y is the number of minutes. However, the code is handling cases where the format
might not be consistent, and it's converting the durations into total minutes.

Let's break down the code step by step:

1. Initialize a List:

duration = list(datal['Duration'])

This line creates a list named duration containing the values from the ‘Duration’ column

of the DataFrame.

2. Handle Inconsistent Format:

for i in range(len(duration)):
if len(duration[i].split()) != 2:
if 'h' in duration[i]:
duration[i] = duration[i].strip() + ' om'
elif 'm" in duration[i]:
duration[i] = '@h {}'.format(duration[i].strip())
This loop iterates through each element in the duration list. If the duration does not
have the format "Xh Ym" (i.e., it doesn't contain both hours and minutes), it's trying to
handle these cases by adding '0h' or 'Om" accordingly.We can break it further to look deeply
into it. Let's break it down:

Loop through each element in the duration list:

for i in range(len(duration)):

This loop iterates through each element of the duration list.

Check if the format is inconsistent (not 'Xh Ym’'):

if len(duration[i].split()) != 2:
It checks if the current duration doesn't have the format "Xh Ym" by splitting the
string and checking if the resulting list has a length different from 2.

Handle cases where hours (‘h’) or minutes (‘m’) are missing:

if 'h' in duration[i]:
duration[i] = duration[i].strip() + " om’
elif 'm' in duration[i]:
duration[i] = '@h {}'.format(duration[i].strip())

* [f'h' (hours) is present but 'm' (minutes) is missing, it adds ' Om' to the end of
the duration.
e If 'm' (minutes) is present but 'h' (hours) is missing, it adds 'Oh ' to the

beginning of the duration.

This part of the code ensures that each 'Duration’ value ends up with a consistent format of "Xh
Ym" before further processing. It's a form of data cleaning to handle variations in the format of
the 'Duration’ values.

1. Extract Hours and Minutes:

dur_hours = []

dur_minutes = []

for i in range(len(duration)):
dur_hours.append(int(duration[i].split()[@][:-1]))
dur_minutes.append(int(duration[i].split()[1][:-1]))

Certainly! This portion of the code is responsible for extracting the hours and minutes from

each 'Duration’ value and appending them to separate lists (dur_hours and

dur_minutes). Let's break down the code:

dur_hours.append(int(duration[i].split()[0][:-1]))
dur_minutes.append(int(duration[i].split()[1][:-1]))

duration[i].split() :

This part splits the 'Duration’ value into a list of strings using whitespace as the separator. For

example, if the 'Duration’ value is "5h 30m", split() would produce thelist ['5h",
'30m'] .

Extracting Hours:
dur_hours.append(int(duration[i].split()[0@][:-1]))

e duration[i].split()[@] extracts the first element of the split list, which
corresponds to the hours part.

e [:-1] isused to exclude the last character, which is 'h' (indicating hours).

e int(...) converts the result to an integer before appending it to the

dur_hours list.

Extracting Minutes:

dur_minutes.append(int(duration[i].split()[1][:-1]))

® duration[i].split()[1] extracts the second element of the split list,
which corresponds to the minutes part.

e [:-1] isused to exclude the last character, which is 'm' (indicating
minutes).

e int(...) converts the result to an integer before appending it to the

dur_minutes list.

In summary, these lines of code are extracting the hours and minutes from each 'Duration’

value, converting them to integers, and then appending them to separate lists. These lists will be
used later to create new columns in the DataFrame to represent the duration in hours and
minutes separately. This loop extracts the hours and minutes from each duration in the modified
duration list and stores them in separate lists dur_hours and dur_minutes .

1. Convert Hours to Minutes:

datal['Duration_hours'] = dur_hours
datal['Duration_minutes'] = dur_minutes
datal.loc[:, 'Duration_hours'] *= 60

This part adds two new columns, ‘Duration_hours' and ‘Duration_minutes’, to the

DataFrame datal . It also converts the 'Duration_hours' to minutes by multiplying by 60.

2. Calculate Total Duration in Minutes:

datal['Duration_Total mins'] = datal['Duration_hours'] +
datal['Duration_minutes']

This line creates a new column named 'Duration_Total_mins' in the DataFrame datal that
represents the total duration in minutes by adding the converted hours and minutes.

In summary, this code is processing a 'Duration' column with varying formats, extracting hours
and minutes, converting hours to minutes, and creating a new column with the total duration in

minutes.

Print 'datal' data frame to see the newly created columns.

datal[['Duration_hours', 'Duration_minutes', 'Duration_Total mins']]

Duration_hours Duration_minutes Duration_Total_mins

0 120 50 170
1 420 25 445
2 1140 0 1140
3 300 25 325
4 240 45 285
10678 120 30 150
10679 120 35 155
10680 180 0 180
10681 120 40 160
10682 480 20 500

10683 rows x 3 columns

As you have noticed, three new columns were created: Duration_hours ,

Duration_minutes ,and Duration_Total mins - all numerical values.

Transforming the 'Departure’ and ‘Arrival’ Time Columns

Now, we will transform the 'Dep_Time' and 'Arrival_Time' columns to the appropriate date and
time format. We will use pandas to_datetime() function for this.

We will split the 'Dep_Time' and 'Arrival_Time' columns into their corresponding hours and
minutes columns.

datal["Dep_Hour"]= pd.to_datetime(datal['Dep_Time']).dt.hour
datal["Dep_Min"]= pd.to_datetime(datal['Dep Time']).dt.minute

The code above is using the Pandas library in Python to extract the hour and minute
components from a column named '‘Dep_Time' in a DataFrame named data1l . It involves
converting the 'Dep_Time' values to datetime objects and then extracting the hour and minute
components.

Let's break down the code:

datal["Dep_Hour"] = pd.to_datetime(datal['Dep Time']).dt.hour
datal["Dep Min"] = pd.to_datetime(datal['Dep Time']).dt.minute

1. pd.to_datetime(datal['Dep_Time']) : This part converts the ‘Dep_Time' column to
Pandas datetime objects. The to_datetime function in Pandas is used for this purpose.

2. .dt.hour and .dt.minute : After converting 'Dep_Time' to datetime objects,
.dt.hour is used to extract the hour component, and .dt.minute is used to extract the

minute component.
3. Creating New Columns:

datal["Dep_Hour"] = ...
datal["Dep Min"] = ...

These lines create two new columns in the DataFrame datal named '‘Dep_Hour' and
‘Dep_Min' to store the extracted hour and minute components, respectively.

In summary, these lines of code create new columns '‘Dep_Hour' and '‘Dep_Min' in the
DataFrame datal containing the hour and minute components of the 'Dep_Time' values. This

can be useful for further analysis or visualization based on the departure times.

Exercise 3

Now, let's transform the 'Arrival_Time' column.

Enter your code and run the cell
datal['Arrival Hour'] = pd.to_datetime(datal['Arrival Time']).dt.hour
datal['Arrival Min'] = pd.to_datetime(datal['Arrival Time']).dt.minute

» Solution (Click Here)

datal[['Arrival_Hour', 'Arrival Min', 'Dep_Hour', 'Dep_Min']]

Arrival_Hour Arrival_Min Dep_Hour Dep_Min

0 1 10 22 20
1 13 15 5 50
2 4 25 9 25
3 23 30 18 5
4 21 35 16 50
10678 22 25 19 55
10679 23 20 20 45
10680 11 20 8 20
10681 14 10 11 30
10682 19 15 10 55

10683 rows x 4 columns

Splitting '‘Departure/Arrival_Time' into Time Zones

To further transform our '‘Departure/Arrival_Time' column, we can break down the 24 hours

format for the departure and arrival time into 4 different time zones: night, morning, afternoon,

and evening. This might be an interesting feature engineering technique to see what time of a
day has the most arrivals/departures.

One way to do this is transformation is by using pandas cut() function.

datal['dep_timezone'] = pd.cut(datal.Dep_Hour, [0,6,12,18,24], labels=['Night', "Mornir
datal['dep_timezone']

0 Evening
1 Night
2 Morning
3 Afternoon
4 Afternoon
10678 Evening
10679 Evening
10680 Morning
10681 Morning
10682 Morning

Name: dep_timezone, Length: 10683, dtype: category
Categories (4, object): ['Night' < "Morning' < 'Afternoon' < 'Evening']

This code is using the Pandas library in Python to create a new column named 'dep_timezone' in
the DataFrame datal based on the values in the existing 'Dep_Hour' column. It categorizes
the departure hours into different time zones (Night, Morning, Afternoon, and Evening) using
the pd.cut function.

Let's break down the code:

datal['dep_timezone'] = pd.cut(datal.Dep_Hour, [0, 6, 12, 18, 24], labels=
['Night', 'Morning', 'Afternoon', 'Evening'])

1. pd.cut(datal.Dep_Hour, [0, 6, 12, 18, 24], labels=['Night', 'Morning’,
'Afternoon', 'Evening']) :

® pd.cut isaPandas function used for binning values into discrete intervals.

datal.Dep_Hour is the column that is being binned (in this case, the departure
hours).

e [0, 6, 12, 18, 24] defines the bin edges. The values will be placed into bins
based on these edges.

labels=['Night', 'Morning', 'Afternoon', 'Evening'] specifies the labels
to assign to each bin.
2. datal['dep_timezone'] = ... :This line creates a new column named 'dep_timezone'

in the DataFrame datal and assigns the bin labels to each corresponding departure hour.

Exercise 4

Now, let's transform the 'Arrival_Time' column into its corresponding time zones, as shown in

the example above.

Enter your code and run the cell
datal['arr_timezones']= pd.cut(datal.Arrival Hour,[0,6,12,18,24],labels=['Night', "Morr
datal['arr_timezones']

) Night
1 Afternoon
2 Night
3 Evening
4 Evening
10678 Evening
10679 Evening
10680 Morning
10681 Afternoon
10682 Evening

Name: arr_timezones, Length: 10683, dtype: category
Categories (4, object): ['Night' < 'Morning' < 'Afternoon' < 'Evening']

» Solution (Click Here)

Transforming the '‘Date_of Journey' Column

Similar to the departure/arrival time, we will now extract some information from the
‘date_of_journey' column, which is also an object type and can not be used for any machine
learning algorithm yet.

So, we will extract the month information first and store it under the 'Month' column name.

datal['Month']= pd.to_datetime(datal["Date_of Journey"], format="%d/%m/%Y").dt.month

Exercise 5

Now, let's create 'Day' and 'Year' columns in a similar way.

Enter your code and run the cell
datal['Day'] = pd.to_datetime(datal["Date_of_Journey"], format="%d/%m/%Y").dt.day
datal['Year'] = pd.to_datetime(datal["Date_of Journey"], format="%d/%m/%Y").dt.year

» Solution (Click Here)
Additionally, we can extract the day of the weak name by using dt.day_name() function.

datal['day_of week'] = pd.to_datetime(datal['Date_of Journey']).dt.day_name()

datal[['Day', ‘Month', 'Year', 'day_of week']]

Day Month Year day of week

0 24 3 2019 Sunday
1 1 5 2019 Saturday
2 9 6 2019 Friday
3 12 5 2019 Thursday
4 1 3 2019 Thursday
10678 9 4 2019 Wednesday
10679 27 4 2019 Saturday
10680 27 4 2019 Saturday
10681 1 3 2019 Thursday
10682 9 5 2019 Thursday

10683 rows x 4 columns

Feature Selection

Here, we will select only those attributes which best explain the relationship of the independent
variables with respect to the target variable, 'price’. There are many methods for feature
selection, building the heatmap and calculating the correlation coefficients scores are the most
commonly used ones.

First, we will select only the relevant and newly transformed variables (and exclude variables
such as 'Route’, 'Additional_Info’, and all the original categorical variables), and place them into

a 'new_data' data frame.

We will print all of our data1 columns.

datal.columns

Index(['Date_of Journey', 'Route', 'Dep_Time', 'Arrival Time', 'Duration’,
'Total_Stops', 'Additional_Info', 'Price', 'Airline_Air Asia',
"Airline_Air India', 'Airline_GoAir', 'Airline_IndiGo',

"Airline_Jet Airways', 'Airline_Jet Airways Business',
"Airline_Multiple carriers', 'Airline_SpiceJet', 'Airline_Trujet’,
'Airline_Vistara', 'Airline_Vistara Premium economy', 'Source_Banglore',
'Source_Chennai', 'Source_Delhi', 'Source_Kolkata', 'Source_Mumbai’,
'Destination_Banglore', 'Destination_Cochin', 'Destination_Delhi’,
'Destination_Hyderabad', 'Destination_Kolkata', 'Destination_New Delhi',
'Duration_hours', 'Duration_minutes', 'Duration_Total mins',
"Arrival Hour', 'Arrival_Min', 'Dep_Hour', 'Dep_Min', 'dep_timezone’,
'arr_timezones', 'Month', 'Day', 'Year', ‘'day_of week'],

dtype="object")

new_data = datal.loc[:,['Total Stops', 'Airline_Air Asia’',
'Airline_Air India‘', 'Airline_GoAir', 'Airline_IndiGo',

"Airline_Jet Airways', 'Airline_Multiple carriers', 'Airline_SpicelJet’,

'Airline_Trujet', 'Airline_ Vistara', 'Source_Banglore',
'Source_Chennai', 'Source Delhi', 'Source_Kolkata', 'Source_ Mumbai’,
'Destination_Banglore', 'Destination_Cochin', 'Destination_Delhi’,

'Destination_Hyderabad', 'Destination_Kolkata', 'Destination_New Delhi',
'Duration_hours', 'Duration_minutes', 'Duration_Total_mins', 'Dep_Hour',

'Dep_Min', ‘'dep_timezone', 'Price']]

Now we will construct a heatmap() , using the seaborn library with a newly formed data frame,

'new_data'.

In [54]: plt.figure(figsize=(18,18))
sns.heatmap(new_data.corr(),annot=True,cmap="'RdY1Gn")

plt.show()

Total_Stops

0.27 |-0.06 Rkl 0.22 0.12 EIEIZ ¥E] 0.49 D.DEED.UEE 0.49

0.024 0.063-0.0510.00170.0380.032-0.0340.062 0.08 -0.046 0.08 -0.0620.057-0.0460.034-0.019 X 0.046 0.16

Airline_Air Asia

Airline_air India - 0.27 1 REI3-0.22 -0 -0.16 _004.0 018-0.0510.00150.023 0.022 0.0230.00150.0680.022-0.0510.053 0.26 -0.033 0.26 -0.0130.045 0.05

Airline_GoAir -0.06-0.024-0.06 ﬁ
Airline_IndiGo JRUES 'D.ZEE 1 -0.37 FOMT SORE KLY t . 0.057 D.OEO.DSI 0.09 0.06 0.14 -0.0198k] A %210.0230.01

Airline_Jet Airways - 0.22 0. 0. S PSP F20.007305150.001 7+ 85-0.0190.097-0.0250.097-0.019-0.052:0.025 111 £10.057 0.31 0.31 0.11 0.024 0.42

0.0490.0390.00130.0290.092-0.02€0.00930.043-0.0360.0420.0091 0.1 -0.0360.0260.018: 0.0160.077:

Airline_Multiple carriers - 0.12 -0.063 1015 15-0.04 9411 & -y S E HUBEER0.069 0.42
Airline_Spicejet ik} -0.14 -0.22 JBND.00280.0620.011 0.19 HAE:10.064 0.098 0.064 05 E:10.044 0.098 0.19 -0.03: 0.041 8% -0.01 0.093 %
Airline_Trujet -9.0025.001-0.0048.001-8.0040.007-0.0035.002 40 .002D.0048.0019.0088.0059.0370.0058.0088.0035.03 70.00190.0030.0088.0076.0085000860.01 -0.01
Airline_Vistara .03'0 02! 0.0620.002 N ENN0.097 0.063.°/1©10.055-0.0150.055 8 0.1 -0.0150.063 0.02 -0.02 0.042-0.0190.024

Source_Banglore 0.032-0.0180.092 0.0590.001 7 1111:10.0110.0040.097 -0.31 -0.44 jONE2 VRl 0.23 BV E0.0079.077

Source_Chennai ,0340.051:0.026 0.14 |-/} -0.069 0.12-0.0010.06 H 0.17 H 1 ﬁ—D.IQ S0 10.0150.067 f 0L L

Source_Delhi - 0.49 -0.0620.00159.009. 0.019 0.42 [1E:0.0083 0 11C IRUEEY o1/ Nl -0.31 -0.23 -0.17 -0.27 kel -0.15 [vic]

Source_Kolkata -0.033 0.08 0.023-0.0430.0570.097 2¢/##20.0640.0059.055 - -0.22 0.16 SO8E) 0.12 0.014 0.12 0.16 0.0240.0094

.0460.022-0.036 0.06 -0.025 g L d 1 [-0.16 -0.23 1 ﬁ -0.23 .Dlﬁﬁ.ﬂl70.038

Destination_Banglore -0.033 0.08 0.023-0.0430.0570.097| 740.0640.0059.055 A -0.22 0.16 SNl 0.12 0.014 0.12 0.16 -0.0240.0094

Source_Mumbai

Destination_Cochin - 0.42 -O.UEII.DUIE.DUB.O 019 0.42 [5155°:0.0083 1/ RN 1/ Y . RUEISE R VRS 0.3 LR 0.3

-0.31

H 1 -0.16 -0.23 H ReRk10.01 98 kL-0.0170.038 k]
1 ﬁ -0.17 ﬁ 1 ﬁ'l}.lf’ RN E1-0.0150.067 QU]

Destination_New Delhi -0.0150.0190.053 0.018-0.0130.057 0.034:0.003 0.02 ﬁ -0.27 -0.19 BRI -0.27 0 SR 0.004 0.080.00670.022 0.11 0.19

Destination_Delhi 0.057-0.068 0.1 0.09 -0.052 0.0440.0035 0.1 RoFi

Destination_Hyderabad .0460.022-0.036 0.06 -0.025

Destination_Kolkata .034-0.051-0.026 0.14 |.11'L -0.069 0.19-0.00190.06.

Duration_hours . ReEEE] 0.31-0.008FuMI30.0083-0.02 Suleyfoli=l 0.3 0.12 Sulek} 0.12 0.3 FuEeigE k0N 10.004 gl JBD 00280.022 0.51

Duration_minutes —+*1°2:10.086-0.0330.067 0.12 0.0410.00760.042 0.23 S8 E10.014-0.0190.014 Bl &) .0240.093.
Duration_Total_mins . RORER) 0.31 -0.01280A50.00850.0198 eFgsRE=] 0.3 0.12 0.12 0.3 RUERISFERIAED.006 /41 JN0.002-0.019 0.51

Dep_Hour ~0.0610.046-0.0130.0160.023 0.11 |.:/:(-1 -0.010.00088.0240.0070.015 0.16 -0.017 0.16 0.00950.017-0.015-0.022.00280.0240.002 uE0.025.0068

Dep_Min -0.00260.16 -0.0450.077-0.0150.024. . . 0.0770.067 0.0240.038-0.024 D.00320.0380.067 0.11-0.0220.093-0.0190.02! -0.024

S
o
b
S
=)
o

RUNE:) 0.27 0.009: .0094 0.27 FeReaREUWERIE L] 0.19 0.51 0.510.00680.024

ps
jet -

e_Tru
glore
glore -
Price

Dep_Hour -
Dep_Min -

. o
ple carriers -
S

Total_Sto
e_Air India -

Airline_GoAir
Airline_IndiGo

Airline_Air Asia
Al

Airline_Spicejet
Airline_Vistara -

Source_Chennai
Source_Delhi -
Source_Kolkata -

Source_Mumbai

Destination_Delhi
Duration_hours -

Duration_minutes

source_Ban!

Destination_Cochin -

Airline_Jet Airways -
Destination_Ban
Destination_Hyderabad
Destination_Kolkata
Destination_New Delhi -
Duration_Total_mins -

Airline_Multij

0.9

0.6

-03

- 0.0

From the heatmap above, extreme green means highly positively correlated features
(relationship between two variables in which both variables move in the same direction),
extreme red means negatively correlated features (relationship between two variables in which
an increase in one variable is associated with a decrease in the other).

Now, we can use the corr() function to calculate and list the correlation between all
independent variables and the 'price'.

features = new_data.corr()['Price’'].sort_values()

features

Airline_IndiGo -0.361048
Destination_Delhi -0.313401
Airline_SpiceJet -0.296552
Destination_Hyderabad -0.230745
Source_Mumbai -0.230745
Destination_Kolkata -0.179216
Source_Chennai -0.179216
Airline_Air Asia -0.133044
Duration_minutes -0.124874
Source_Banglore -0.118026
Airline_GoAir -0.095146
Airline_Vistara -0.060646
Dep_Min -0.024492
Airline_Trujet -0.010380
Dep_Hour 0.006819
Source_Kolkata 0.009377
Destination_Banglore 0.009377
Airline_Air India 0.050346
Airline_Multiple carriers 0.141087
Destination_New Delhi 0.189785
Destination_Cochin 0.270619
Source_Delhi 0.270619
Airline_Jet Airways 0.416135
Duration_Total_mins 0.506371
Duration_hours 0.508672
Total Stops 0.603897
Price 1.000000

Name: Price, dtype: float64

We can also plot these correlation coefficients for easier visualization.

features.plot(kind="bar',figsize=(10,8))
plt.show()

1.0 4
0.8 A

0.6

0.4
0.0 A - == . I I

—0.2

-0.4 -

s -

Price -

jet 4

glore
glore -

Destination_Kolkata
Dep_Min -
Dep_Hour -

Total_Sto

ple carriers -

Source Delhi 4

Airline_IndiGo 4
Destination_Delhi
Airline_Spicejet
Source_Mumbai 4
Source Chennai
Airline_Air Asia
Duration_minutes -
Source_Ban
Airline_GoAir 4
Airline Vistara -
Airline _Tru
Source_Kolkata -
Airline_Air India -
Destination _Cochin -
Airline_Jet Airways -
Duration_Total_mins -
Duration_hours 4

Destination_Hyderabad -
Destination_Ban

Destination_New Delhi

Airline_Multi

From the graph above, we can deduct some of the highly correlated features and select only
those ones for any future analysis.

Feature Extraction using Principal Component
Analysis (Optional)

PCA with Scikit-Learn

Dimentionality reduction is part of the feature extraction process that combines the existing
features to produce more useful ones. The goal of dimensionality reduction is to simplify the
data without loosing too much information. Principal Component Analysis (PCA) is one of the
most popular dimensionality reduction algorithms. First, it identifies the hyperplane that lies
closest to the data, and then it projects the data onto it. In this way, a few multidimensional
features are merged into one.

In the following portion of the lab, we will use scikit-learn library to perform some PCA on
our data. To learn more about scikit-learn PCA, please visit this documentation.

First, we must scale our data using the StandardScaler() function. We will assign all the
independent variables to x, and the dependent variable, 'price’, to y.

x = datal.loc[:,['Total_Stops', 'Airline_Air Asia’,
'Airline_Air India', 'Airline_GoAir', 'Airline_IndiGo',
"Airline_Jet Airways', 'Airline_Multiple carriers', 'Airline_Spicelet’,
"Airline_Trujet', 'Airline_Vistara', 'Source_Banglore',
'Source_Chennai', 'Source_Delhi', 'Source_Kolkata', 'Source_Mumbai',
'Destination_Banglore', 'Destination_Cochin', 'Destination_Delhi’,
‘Destination_Hyderabad', 'Destination_Kolkata', 'Destination_New Delhi',
‘Duration_hours', 'Duration_minutes', 'Duration_Total mins', 'Dep_Hour',
'Dep_Min']]

y= datal.Price

scaler = StandardScaler()
x=scaler.fit_transform(x.astype(np.float64))
X

array([[-1.22066609, -0.17544122, -0.44291155, ..., -0.93158255,

1.65425948, -0.23505036],

[1.74143186, -0.17544122, 2.25778713, -0.39007152,
-1.30309491, 1.36349161],

[1.74143186, -0.17544122, -0.44291155, 0.97847452,
-0.60724682, 0.0313733],

oo,

[-1.22066609, -0.17544122, -0.44291155, -0.91189124,
-0.78120884, -0.23505036],

[-1.22066609, -0.17544122, -0.44291155, -0.95127386,
-0.25932278, ©.29779696],

[1.74143186, -0.17544122, 2.25778713, -0.28176932,
-0.4332848 , 1.62991527]])

Once the data is scaled, we can apply the fit_transform() function to reduce the
dimensionality of the dataset down to two dimensions.

print(np.isnan(x).sum())

1

X = np.nan_to_num(x)

pca = PCA(n_components = 2)
pca.fit_transform(x)

array([[-2.87631608, -08.55645701],
[0.31883409, 2.39182774],
[3.05947064, -0.52675097],
e,
[-2.24761482, -0.58799069],
[-2.69663415, -0.285652 1],
[1.92522086, -1.10484483]])

Explained Variance Ratio

Another useful piece of information in PCA is the explained variance ratio of each principal
component, available via the explained_variance_ratio_ function. The ratio indicates the
proportion of the dataset's variance that lies along each principal component. Let's look at the
explained variance ratio of each of our two components.

explained_variance=pca.explained_variance_ratio_
explained_variance

array([0.17545413, ©.12112304])

The first component constitutes 17.54% of the variance and second component constitutes
12.11% of the variance between the features.

Exercise 6 (Optional)

In this exercise, experiment with the number of components to see how many dimensions our
dataset could be reduced to in order to explain most of the variability between the features.
Additionally, you can plot the components using bar plot to see how much variability each

component represents.

Enter your code and run the cell

pca = PCA(n_components = 7)

pca.fit_transform(x)
explained_variance=pca.explained_variance_ratio_
explained_variance

array([0.17545413, 0.12112304, 0©.09263209, 0.0827907 , ©.06737639,
0.0527503 , 0.04818182])

Enter your code and run the cell
with plt.style.context('dark_background'):

plt.figure(figsize=(6, 4))

plt.bar(range(7), explained_variance, alpha=0.5, align='center',
label="individual explained variance')

plt.ylabel('Explained variance ratio')

plt.xlabel('Principal components')

plt.legend(loc="best")

plt.tight_layout()

0.175 (s individual explained variance |
0.150
0.125
0.100

0.075

(]
]
m
Ll
[i}]
[]
c
]
[1n]
-
=]
il
=
‘o
»
L

0.050

0.025

0.000

Principal components

» Solution_part1 (Click Here)

» Solution_part2 (Click Here)

Choosing the Right Number of Dimensions

Instead of arbitrary choosing the number of dimensions to reduce down to, it is simpler to
choose the number of dimensions that add up to a sufficiently large proportion of the variance,
let's say 95%.

The following code performs PCA without reducing dimensionality, then computes the

minimum number of dimensions required to preserve 95% of the variance.

pca = PCA()

pca.fit(x)

cumsum = np.cumsum(pca.explained variance_ratio)
d = np.argmax(cumsum >=0.95) + 1

d

16

There are 16 components required to meet 95% variance. Therefore, we could set
n_components = 16 and run PCA again. However, there is better way, instead of specifying the
number of principal components you want to preserve, you can set n_components to be a float

between 0.0 and 1.0, indicating the ratio of variance you wish to preserve.

pca = PCA(n_components=0.95)
x_reduced = pca.fit_transform(x)

There is also a graphical way to determine the number of principal components in your analysis.
It is to plot the explained variance as a function of the number of dimensions. There will usually

be an elbow in the curve, where the explained variance stops growing fast. That point is usually

the optimal point for the number of principal components.

px.area(

x=range(1l, cumsum.shape[0] + 1),

y=cumsum,

labels={"x": "# Components", "y": "Explained Variance"}
)

Congratulations! - You have completed the
lab

