
Machine Learning
Foundations
Feature Engineering
A critical part of the successful Machine Learning project is coming up with a good set of
features to train on. This process is called feature engineering, and it involves three steps:
feature transformation (transforming the original features), feature selection (selecting the most
useful features to train on), and feature extraction (combining existing features to produce more
useful ones). In this notebook we will explore different tools in Feature Engineering.

Objectives
After completing this lab you will be able to:

Understand the types of Feature Engineering
Feature Transformation

Dealing with Categorical Variables
One Hot Encoding
Label Encoding

Date Time Transformations
Feature Selection
Feature Extraction using Principal Component Analysis

Setup
For this lab, we will be using the following libraries:

pandas  for managing the data.
numpy  for mathematical operations.
seaborn  for visualizing the data.
matplotlib  for visualizing the data.
plotly.express  for visualizing the data.
sklearn  for machine learning and machine-learning-pipeline related functions.



Installing Required Libraries

The following required modules are pre-installed in the Skills Network Labs environment.
However if you run this notebook commands in a different Jupyter environment (e.g. Watson
Studio or Ananconda) you will need to install these libraries by removing the #  sign before
!mamba  in the code cell below.

In [2]: # All Libraries required for this lab are listed below.
!mamba install -qy pandas==1.3.4 numpy==1.21.4 seaborn==0.9.0 matplotlib==3.5.0 scikit
# Note: If your environment doesn't support "!mamba install", use "!pip install"



Could not solve for environment specs
The following packages are incompatible
├─ matplotlib 3.5.0  is installable with the potential options
│  ├─ matplotlib [2.2.2|3.1.2|...|3.5.3] would require
│  │  └─ pyqt [ |>=5.6,<6.0a0 ] with the potential options
│  │     ├─ pyqt 5.6.0 would require
│  │     │  └─ qt 5.6.*  with the potential options
│  │     │     ├─ qt 5.6.2 would require
│  │     │     │  ├─ gst-plugins-base >=1.12.2,<1.13.0a0 , which requires
│  │     │     │  │  └─ gstreamer [>=1.12.2,<1.13.0a0 |>=1.12.4,<1.13.0a0 ], which re
quires
│  │     │     │  │     └─ glib >=2.53.6,<3.0a0 , which can be installed;
│  │     │     │  └─ openssl 1.0.* , which can be installed;
│  │     │     ├─ qt 5.6.2 would require
│  │     │     │  ├─ glib >=2.53.6,<3.0a0 , which can be installed;
│  │     │     │  └─ openssl >=1.0.2n,<1.0.3a , which can be installed;
│  │     │     ├─ qt 5.6.3 would require
│  │     │     │  ├─ glib >=2.56.1,<3.0a0 , which can be installed;
│  │     │     │  └─ openssl >=1.0.2o,<1.0.3a , which can be installed;
│  │     │     ├─ qt 5.6.3 would require
│  │     │     │  ├─ glib >=2.56.1,<3.0a0 , which can be installed;
│  │     │     │  └─ openssl >=1.0.2p,<1.0.3a , which can be installed;
│  │     │     └─ qt [5.6.3|5.9.7] would require
│  │     │        ├─ fontconfig >=2.13.0,<3.0a0  with the potential options
│  │     │        │  ├─ fontconfig 2.14.2 would require
│  │     │        │  │  └─ freetype >=2.12.1,<3.0a0 , which can be installed;
│  │     │        │  ├─ fontconfig [2.13.0|2.13.1] would require
│  │     │        │  │  └─ libuuid >=1.0.3,<2.0a0 , which can be installed;
│  │     │        │  ├─ fontconfig 2.14.1 would require
│  │     │        │  │  └─ libuuid >=1.41.5,<2.0a0 , which can be installed;
│  │     │        │  └─ fontconfig 2.14.1 would require
│  │     │        │     └─ freetype >=2.10.4,<3.0a0 , which can be installed;
│  │     │        └─ glib >=2.56.2,<3.0a0 , which can be installed;
│  │     ├─ pyqt [5.15.10|5.15.7|5.9.2] would require
│  │     │  └─ python >=3.10,<3.11.0a0 , which can be installed;
│  │     ├─ pyqt [5.15.10|5.15.7] would require
│  │     │  └─ python >=3.11,<3.12.0a0 , which can be installed;
│  │     ├─ pyqt 5.15.10 would require
│  │     │  └─ python >=3.12,<3.13.0a0 , which can be installed;
│  │     ├─ pyqt [5.15.10|5.15.7|5.9.2] would require
│  │     │  └─ python >=3.8,<3.9.0a0 , which can be installed;
│  │     ├─ pyqt [5.15.10|5.15.7|5.9.2] would require
│  │     │  └─ python >=3.9,<3.10.0a0 , which can be installed;
│  │     ├─ pyqt 5.15.7 would require
│  │     │  └─ qtwebkit 5.* , which requires
│  │     │     └─ glib >=2.69.1,<3.0a0 , which can be installed;
│  │     ├─ pyqt [5.6.0|5.9.2] would require
│  │     │  └─ python >=2.7,<2.8.0a0 , which can be installed;
│  │     ├─ pyqt [5.6.0|5.9.2] would require
│  │     │  └─ python >=3.5,<3.6.0a0 , which can be installed;
│  │     ├─ pyqt [5.6.0|5.9.2] would require
│  │     │  └─ python >=3.6,<3.7.0a0 , which can be installed;
│  │     └─ pyqt 5.9.2 would require
│  │        └─ qt [5.9.* |>=5.9.6,<5.10.0a0 ] with the potential options
│  │           ├─ qt [5.6.3|5.9.7], which can be installed (as previously explained);
│  │           ├─ qt 5.9.6 would require
│  │           │  ├─ glib >=2.56.1,<3.0a0 , which can be installed;
│  │           │  └─ openssl 1.0.* , which can be installed;
│  │           └─ qt [5.9.4|5.9.5] would require
│  │              └─ openssl 1.0.* , which can be installed;



│  ├─ matplotlib [3.5.0|3.5.1|...|3.8.0] would require
│  │  └─ python >=3.10,<3.11.0a0 , which can be installed;
│  ├─ matplotlib [3.1.1|3.1.2|...|3.7.2] would require
│  │  └─ python >=3.8,<3.9.0a0 , which can be installed;
│  └─ matplotlib [3.3.4|3.4.2|...|3.8.0] would require
│     └─ python >=3.9,<3.10.0a0 , which can be installed;
├─ numpy 1.21.4  does not exist (perhaps a typo or a missing channel);
└─ seaborn 0.9.0  is installable with the potential options
   ├─ seaborn 0.9.0 would require
   │  └─ matplotlib >=1.4.3  with the potential options
   │     ├─ matplotlib [2.2.2|3.1.2|...|3.5.3], which can be installed (as previously 
explained);
   │     ├─ matplotlib [3.5.0|3.5.1|...|3.8.0], which can be installed (as previously 
explained);
   │     ├─ matplotlib [3.1.1|3.1.2|...|3.7.2], which can be installed (as previously 
explained);
   │     ├─ matplotlib [3.3.4|3.4.2|...|3.8.0], which can be installed (as previously 
explained);
   │     ├─ matplotlib [2.0.2|2.1.0|...|2.2.3] would require
   │     │  └─ python >=2.7,<2.8.0a0 , which can be installed;
   │     ├─ matplotlib [2.0.2|2.1.0|...|3.0.0] would require
   │     │  └─ python >=3.5,<3.6.0a0 , which can be installed;
   │     ├─ matplotlib [2.0.2|2.1.0|...|3.3.4] would require
   │     │  └─ python >=3.6,<3.7.0a0 , which can be installed;
   │     ├─ matplotlib [2.2.3|3.0.0|...|3.1.2] would require
   │     │  └─ pyqt 5.9.* , which can be installed (as previously explained);
   │     ├─ matplotlib [3.6.2|3.7.1|3.7.2|3.8.0] would require
   │     │  └─ python >=3.11,<3.12.0a0 , which can be installed;
   │     └─ matplotlib 3.8.0 would require
   │        └─ python >=3.12,<3.13.0a0 , which can be installed;
   ├─ seaborn 0.9.0 would require
   │  └─ python >=2.7,<2.8.0a0 , which can be installed;
   ├─ seaborn 0.9.0 would require
   │  └─ python >=3.5,<3.6.0a0 , which can be installed;
   └─ seaborn 0.9.0 would require
      └─ python >=3.6,<3.7.0a0 , which can be installed.

Preparing transaction: ...working... done
Verifying transaction: ...working... done
Executing transaction: ...working... done

In [3]: !mamba install -qy openpyxl

In [4]: # Surpress warnings from using older version of sklearn:
def warn(*args, **kwargs):
    pass
import warnings
warnings.warn = warn

In [5]: import pandas as pd
import numpy as np

import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns
import plotly.express as px

from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA



Reading and understanding our data
For this lab, we will be using the airlines_data.xlsx file, hosted on IBM Cloud object. This dataset
contains the prices of flight tickets for various airlines between the months of March and June of
2019 and between various cities. This dataset is often used for prediction analysis of the flight
prices which are influenced by various factors, such as name of the airline, date of journey,
route, departure and arrival times, the source and the destination of the trip, duration and other
parameters.

In this notebook, we will use the airlines dataset to perform feature engineering on some of its
independent variables.

Let's start by reading the data into pandas data frame and looking at the first 5 rows using the
head()  method.

Airline Date_of_Journey Source Destination Route Dep_Time Arrival_Time Duration Total_St

0 IndiGo 24/03/2019 Banglore New Delhi
BLR

→
DEL

22:20 01:10 22 Mar 2h 50m non-s

1 Air
India 1/05/2019 Kolkata Banglore

CCU
→ IXR
→ BBI

→
BLR

05:50 13:15 7h 25m 2 st

2 Jet
Airways 9/06/2019 Delhi Cochin

DEL
→

LKO
→

BOM
→

COK

09:25 04:25 10 Jun 19h 2 st

3 IndiGo 12/05/2019 Kolkata Banglore

CCU
→

NAG
→

BLR

18:05 23:30 5h 25m 1 s

4 IndiGo 01/03/2019 Banglore New Delhi

BLR
→

NAG
→

DEL

16:50 21:35 4h 45m 1 s

By using the info  function, we will take a look at the types of data that our dataset contains.

In [21]: data = pd.read_excel('https://cf-courses-data.s3.us.cloud-object-storage.appdomain.clo
data.head()

Out[21]:

In [7]: data.info()



<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10683 entries, 0 to 10682
Data columns (total 11 columns):
 #   Column           Non-Null Count  Dtype 
---  ------           --------------  ----- 
 0   Airline          10683 non-null  object
 1   Date_of_Journey  10683 non-null  object
 2   Source           10683 non-null  object
 3   Destination      10683 non-null  object
 4   Route            10682 non-null  object
 5   Dep_Time         10683 non-null  object
 6   Arrival_Time     10683 non-null  object
 7   Duration         10683 non-null  object
 8   Total_Stops      10682 non-null  object
 9   Additional_Info  10683 non-null  object
 10  Price            10683 non-null  int64 
dtypes: int64(1), object(10)
memory usage: 918.2+ KB

As we see from the output above, we mostly have object data types, except for the 'price'
column, which is an integer.

The describe()  function provides the statistical information about the numerical variables. In
our case, it is the 'price' variable.

count mean std min 25% 50% 75% max

Price 10683.0 9087.064121 4611.359167 1759.0 5277.0 8372.0 12373.0 79512.0

Next, we will check for any null values.

Airline            0
Date_of_Journey    0
Source             0
Destination        0
Route              1
Dep_Time           0
Arrival_Time       0
Duration           0
Total_Stops        1
Additional_Info    0
Price              0
dtype: int64

Now that we have found some null points, we need to either remove them from our dataset or
fill them with something else. In this case, we will use fillna()  and method='ffill' , which
fills the last observed non-null value forward until another non-null value is encountered.

Feature Transformation

In [9]: data.describe().T

Out[9]:

In [10]: data.isnull().sum()

Out[10]:

In [11]: data = data.fillna(method='ffill')



Feature Transformation means transforming our features to the functions of the original
features. For example, feature encoding, scaling, and discretization (the process of transforming
continuous variables into discrete form, by creating bins or intervals) are the most common
forms of data transformation.

Dealing with Categorical Variables

Categorical variables represent qualitative data with no apparent inherent mathematical
meaning. Therefore, for any machine learning analysis, all the categorical data must be
transformed into the numerical data types. First, we'll start with 'Airlines' column, as it contains
categorical values. We will use unique()  method to obtain all the categories in this column.

['IndiGo',
 'Air India',
 'Jet Airways',
 'SpiceJet',
 'Multiple carriers',
 'GoAir',
 'Vistara',
 'Air Asia',
 'Vistara Premium economy',
 'Jet Airways Business',
 'Multiple carriers Premium economy',
 'Trujet']

From the above list, we notice that some of the airline names are being repeated. For example,
'Jet Airways' and 'Jet Airways Business'. This means that some of the airlines are subdivided into
separate parts. We will combine these 'two-parts' airlines to make our categorical features more
consistent with the rest of the variables.

Here, we will use the numpy where()  function to locate and combine the two categories.

The code above is using the NumPy library to modify the 'Airline' column in a DataFrame
named data . Let's break down the code:

data['Airline'] = np.where(data['Airline']=='Jet Airways Business', 'Jet 
Airways', data['Airline'])

Here's what each part of the code is doing:

1. data['Airline'] : This part references the 'Airline' column in the DataFrame data . It
selects the entire column.

2. np.where(...) : This is a NumPy function that is used for conditional assignment. It has
the following structure:

In [12]: data['Airline'].unique().tolist()

Out[12]:

In [19]: data['Airline'] = np.where(data['Airline']=='Vistara Premium economy', 'Vistara', data
data['Airline'] = np.where(data['Airline']=='Jet Airways Business', 'Jet Airways', dat



The first argument is the condition to be checked ( data['Airline']=='Jet 
Airways Business' ).
The second argument is the value to be assigned when the condition is true ( 'Jet 
Airways' ).
The third argument is the value to be assigned when the condition is false
( data['Airline']  - i.e., keep the original value).

3. The entire line effectively says: "If the value in the 'Airline' column is 'Jet Airways Business',
replace it with 'Jet Airways'; otherwise, keep the original value."

So, after this line of code executes, the 'Airline' column in the DataFrame data  will have the
values modified according to the specified condition. This is a common technique in data
manipulation to clean or transform data based on certain conditions.

Exercise 1
In this exercise, use np.where()  function to combine 'Multiple carriers Premium economy'
and 'Multiple carriers' categories, like shown in the code above. Print the newly created list
using unique().tolist()  functions.

['IndiGo',
 'Air India',
 'Jet Airways',
 'SpiceJet',
 'Multiple carriers',
 'GoAir',
 'Vistara',
 'Air Asia',
 'Vistara Premium economy',
 'Jet Airways Business',
 'Trujet']

Solution (Click Here)

One Hot Encoding

Now, to be recognized by a machine learning algorithms, our categorical variables should be
converted into numerical ones. One way to do this is through one hot encoding. To learn more
about this process, please visit this documentation.

We will use, get_dummies()  method to do this transformation. In the next cell, we will
transform 'Airline', 'Source', and 'Destination' into their respective numeric variables. We will put
all the transformed data into a 'data1' data frame.

In [22]: # Enter your code and run the cell
data['Airline'] = np.where(data['Airline']=='Multiple carriers Premium economy','Multi
data['Airline'].unique().tolist()

Out[22]:

In [23]: data1 = pd.get_dummies(data=data, columns = ['Airline', 'Source', 'Destination'])



Date_of_Journey Route Dep_Time Arrival_Time Duration Total_Stops Additional_Info Price Ai

0 24/03/2019
BLR

→
DEL

22:20 01:10 22 Mar 2h 50m non-stop No info 3897

1 1/05/2019

CCU
→ IXR
→ BBI

→
BLR

05:50 13:15 7h 25m 2 stops No info 7662

2 9/06/2019

DEL
→

LKO
→

BOM
→

COK

09:25 04:25 10 Jun 19h 2 stops No info 13882

3 12/05/2019

CCU
→

NAG
→

BLR

18:05 23:30 5h 25m 1 stop No info 6218

4 01/03/2019

BLR
→

NAG
→

DEL

16:50 21:35 4h 45m 1 stop No info 13302

5 rows × 30 columns

Below, we will compare our original data frame with the transformed one.

(10683, 11)

(10683, 30)

As we can see, we went from 11 original features in our dataset to 38. This is because Pandas
get_dummies()  approach when applied to a column with different categories (e.g. different

airlines) will produce a new column (variable) for each unique categorical value (for each unique
airline). It will place a one in the column corresponding to the categorical value present for that
observation.

Exercise 2

In [24]: data1.head()

Out[24]:

In [25]: data.shape

Out[25]:

In [26]: data1.shape

Out[26]:



In this exercise, use value_counts()  to determine the values distribution of the 'Total_Stops'
parameter.

1 stop      5625
non-stop    3491
2 stops     1520
3 stops       45
4 stops        1
Name: Total_Stops, dtype: int64

Solution (Click Here)

Label Encoding

Since 'Total_Stops' is originally a categorical data type, we also need to convert it into numerical
one. For this, we can perform a label encoding, where values are manually assigned to the
corresponding keys, like "0" to a "non-stop", using the replace()  function.

In [28]: # Enter your code and run the cell
data['Total_Stops'].value_counts()

Out[28]:

In [29]: data1.replace({"non-stop":0,"1 stop":1,"2 stops":2,"3 stops":3,"4 stops":4},inplace=Tr
data1.head()



Date_of_Journey Route Dep_Time Arrival_Time Duration Total_Stops Additional_Info Price Ai

0 24/03/2019
BLR

→
DEL

22:20 01:10 22 Mar 2h 50m 0.0 No info 3897

1 1/05/2019

CCU
→ IXR
→ BBI

→
BLR

05:50 13:15 7h 25m 2.0 No info 7662

2 9/06/2019

DEL
→

LKO
→

BOM
→

COK

09:25 04:25 10 Jun 19h 2.0 No info 13882

3 12/05/2019

CCU
→

NAG
→

BLR

18:05 23:30 5h 25m 1.0 No info 6218

4 01/03/2019

BLR
→

NAG
→

DEL

16:50 21:35 4h 45m 1.0 No info 13302

5 rows × 30 columns

Date Time Transformations

Transforming the 'Duration' time column

Here, we will take a closer look at the Duration  variable. Duration is the time taken by a plane
to reach its destination. It is the difference between the Dep_Time  and Arrival_Time . In our
dataset, the Duration  is expressed as a string, in hours and minutes. To be recognized by
machine learning algorithms, we also need to transform it into numerical type.

The code below will iterate through each record in Duration  column and split it into hours
and minutes, as two additional separate columns. Also, we want to add the Duration_hours
(in minutes) to the Duration_minutes  column to obtain a Duration_Total_mins  time, in
minutes. The total duration time column will be useful feature for any regression type of
analysis.

Out[29]:

In [30]: duration = list(data1['Duration'])
for i in range(len(duration)) :
    if len(duration[i].split()) != 2:
        if 'h' in duration[i] :



This code above is designed to process a column named 'Duration' in a DataFrame ( data1 ).
The 'Duration' column contains time durations in the format "Xh Ym" where X is the number of
hours and Y is the number of minutes. However, the code is handling cases where the format
might not be consistent, and it's converting the durations into total minutes.

Let's break down the code step by step:

1. Initialize a List:

duration = list(data1['Duration'])

This line creates a list named duration  containing the values from the 'Duration' column
of the DataFrame.

2. Handle Inconsistent Format:

for i in range(len(duration)):
    if len(duration[i].split()) != 2:
        if 'h' in duration[i]:
            duration[i] = duration[i].strip() + ' 0m'
        elif 'm' in duration[i]:
            duration[i] = '0h {}'.format(duration[i].strip())

This loop iterates through each element in the duration  list. If the duration does not
have the format "Xh Ym" (i.e., it doesn't contain both hours and minutes), it's trying to
handle these cases by adding '0h' or '0m' accordingly.We can break it further to look deeply
into it. Let's break it down:

Loop through each element in the duration  list:

for i in range(len(duration)):

This loop iterates through each element of the duration  list.

Check if the format is inconsistent (not 'Xh Ym'):

if len(duration[i].split()) != 2:

It checks if the current duration doesn't have the format "Xh Ym" by splitting the
string and checking if the resulting list has a length different from 2.

            duration[i] = duration[i].strip() + ' 0m'
        elif 'm' in duration[i] :
            duration[i] = '0h {}'.format(duration[i].strip())
dur_hours = []
dur_minutes = []  
 
for i in range(len(duration)) :
    dur_hours.append(int(duration[i].split()[0][:-1]))
    dur_minutes.append(int(duration[i].split()[1][:-1]))
     
 
data1['Duration_hours'] = dur_hours
data1['Duration_minutes'] =dur_minutes
data1.loc[:,'Duration_hours'] *= 60
data1['Duration_Total_mins']= data1['Duration_hours']+data1['Duration_minutes']



Handle cases where hours ('h') or minutes ('m') are missing:

if 'h' in duration[i]:
       duration[i] = duration[i].strip() + ' 0m'
   elif 'm' in duration[i]:
       duration[i] = '0h {}'.format(duration[i].strip())

If 'h' (hours) is present but 'm' (minutes) is missing, it adds ' 0m' to the end of
the duration.
If 'm' (minutes) is present but 'h' (hours) is missing, it adds '0h ' to the
beginning of the duration.

This part of the code ensures that each 'Duration' value ends up with a consistent format of "Xh
Ym" before further processing. It's a form of data cleaning to handle variations in the format of
the 'Duration' values.

1. Extract Hours and Minutes:

dur_hours = []
dur_minutes = []  
for i in range(len(duration)):
    dur_hours.append(int(duration[i].split()[0][:-1]))
    dur_minutes.append(int(duration[i].split()[1][:-1]))

Certainly! This portion of the code is responsible for extracting the hours and minutes from
each 'Duration' value and appending them to separate lists ( dur_hours  and
dur_minutes ). Let's break down the code:

dur_hours.append(int(duration[i].split()[0][:-1]))
dur_minutes.append(int(duration[i].split()[1][:-1]))

duration[i].split() :

This part splits the 'Duration' value into a list of strings using whitespace as the separator. For
example, if the 'Duration' value is "5h 30m", split()  would produce the list ['5h', 
'30m'] .

Extracting Hours:

dur_hours.append(int(duration[i].split()[0][:-1]))

duration[i].split()[0]  extracts the first element of the split list, which
corresponds to the hours part.
[:-1]  is used to exclude the last character, which is 'h' (indicating hours).
int(...)  converts the result to an integer before appending it to the
dur_hours  list.

Extracting Minutes:

dur_minutes.append(int(duration[i].split()[1][:-1]))



duration[i].split()[1]  extracts the second element of the split list,
which corresponds to the minutes part.
[:-1]  is used to exclude the last character, which is 'm' (indicating

minutes).
int(...)  converts the result to an integer before appending it to the
dur_minutes  list.

In summary, these lines of code are extracting the hours and minutes from each 'Duration'
value, converting them to integers, and then appending them to separate lists. These lists will be
used later to create new columns in the DataFrame to represent the duration in hours and
minutes separately. This loop extracts the hours and minutes from each duration in the modified
duration  list and stores them in separate lists dur_hours  and dur_minutes .

1. Convert Hours to Minutes:

data1['Duration_hours'] = dur_hours
data1['Duration_minutes'] = dur_minutes
data1.loc[:, 'Duration_hours'] *= 60

This part adds two new columns, 'Duration_hours' and 'Duration_minutes', to the
DataFrame data1 . It also converts the 'Duration_hours' to minutes by multiplying by 60.

2. Calculate Total Duration in Minutes:

data1['Duration_Total_mins'] = data1['Duration_hours'] + 
data1['Duration_minutes']

This line creates a new column named 'Duration_Total_mins' in the DataFrame data1  that
represents the total duration in minutes by adding the converted hours and minutes.

In summary, this code is processing a 'Duration' column with varying formats, extracting hours
and minutes, converting hours to minutes, and creating a new column with the total duration in
minutes.

Print 'data1' data frame to see the newly created columns.

In [32]: data1[['Duration_hours','Duration_minutes','Duration_Total_mins']]



Duration_hours Duration_minutes Duration_Total_mins

0 120 50 170

1 420 25 445

2 1140 0 1140

3 300 25 325

4 240 45 285

... ... ... ...

10678 120 30 150

10679 120 35 155

10680 180 0 180

10681 120 40 160

10682 480 20 500

10683 rows × 3 columns

As you have noticed, three new columns were created: Duration_hours ,
Duration_minutes , and Duration_Total_mins  - all numerical values.

Transforming the 'Departure' and 'Arrival' Time Columns

Now, we will transform the 'Dep_Time' and 'Arrival_Time' columns to the appropriate date and
time format. We will use pandas to_datetime()  function for this.

We will split the 'Dep_Time' and 'Arrival_Time' columns into their corresponding hours and
minutes columns.

The code above is using the Pandas library in Python to extract the hour and minute
components from a column named 'Dep_Time' in a DataFrame named data1 . It involves
converting the 'Dep_Time' values to datetime objects and then extracting the hour and minute
components.

Let's break down the code:

data1["Dep_Hour"] = pd.to_datetime(data1['Dep_Time']).dt.hour
data1["Dep_Min"] = pd.to_datetime(data1['Dep_Time']).dt.minute

1. pd.to_datetime(data1['Dep_Time']) : This part converts the 'Dep_Time' column to
Pandas datetime objects. The to_datetime  function in Pandas is used for this purpose.

2. .dt.hour  and .dt.minute : After converting 'Dep_Time' to datetime objects,
.dt.hour  is used to extract the hour component, and .dt.minute  is used to extract the

Out[32]:

In [38]: data1["Dep_Hour"]= pd.to_datetime(data1['Dep_Time']).dt.hour
data1["Dep_Min"]= pd.to_datetime(data1['Dep_Time']).dt.minute



minute component.
3. Creating New Columns:

data1["Dep_Hour"] = ...
data1["Dep_Min"] = ...

These lines create two new columns in the DataFrame data1  named 'Dep_Hour' and
'Dep_Min' to store the extracted hour and minute components, respectively.

In summary, these lines of code create new columns 'Dep_Hour' and 'Dep_Min' in the
DataFrame data1  containing the hour and minute components of the 'Dep_Time' values. This
can be useful for further analysis or visualization based on the departure times.

Exercise 3
Now, let's transform the 'Arrival_Time' column.

Solution (Click Here)

Arrival_Hour Arrival_Min Dep_Hour Dep_Min

0 1 10 22 20

1 13 15 5 50

2 4 25 9 25

3 23 30 18 5

4 21 35 16 50

... ... ... ... ...

10678 22 25 19 55

10679 23 20 20 45

10680 11 20 8 20

10681 14 10 11 30

10682 19 15 10 55

10683 rows × 4 columns

Splitting 'Departure/Arrival_Time' into Time Zones

To further transform our 'Departure/Arrival_Time' column, we can break down the 24 hours
format for the departure and arrival time into 4 different time zones: night, morning, afternoon,

In [39]: # Enter your code and run the cell
data1['Arrival_Hour'] = pd.to_datetime(data1['Arrival_Time']).dt.hour
data1['Arrival_Min'] = pd.to_datetime(data1['Arrival_Time']).dt.minute

In [41]: data1[['Arrival_Hour','Arrival_Min','Dep_Hour','Dep_Min']]

Out[41]:



and evening. This might be an interesting feature engineering technique to see what time of a
day has the most arrivals/departures.

One way to do this is transformation is by using pandas cut()  function.

0          Evening
1            Night
2          Morning
3        Afternoon
4        Afternoon
           ...    
10678      Evening
10679      Evening
10680      Morning
10681      Morning
10682      Morning
Name: dep_timezone, Length: 10683, dtype: category
Categories (4, object): ['Night' < 'Morning' < 'Afternoon' < 'Evening']

This code is using the Pandas library in Python to create a new column named 'dep_timezone' in
the DataFrame data1  based on the values in the existing 'Dep_Hour' column. It categorizes
the departure hours into different time zones (Night, Morning, Afternoon, and Evening) using
the pd.cut  function.

Let's break down the code:

data1['dep_timezone'] = pd.cut(data1.Dep_Hour, [0, 6, 12, 18, 24], labels=
['Night', 'Morning', 'Afternoon', 'Evening'])

1. pd.cut(data1.Dep_Hour, [0, 6, 12, 18, 24], labels=['Night', 'Morning', 
'Afternoon', 'Evening']) :

pd.cut  is a Pandas function used for binning values into discrete intervals.
data1.Dep_Hour  is the column that is being binned (in this case, the departure

hours).
[0, 6, 12, 18, 24]  defines the bin edges. The values will be placed into bins

based on these edges.
labels=['Night', 'Morning', 'Afternoon', 'Evening']  specifies the labels

to assign to each bin.
2. data1['dep_timezone'] = ... : This line creates a new column named 'dep_timezone'

in the DataFrame data1  and assigns the bin labels to each corresponding departure hour.

Exercise 4
Now, let's transform the 'Arrival_Time' column into its corresponding time zones, as shown in
the example above.

In [40]: data1['dep_timezone'] = pd.cut(data1.Dep_Hour, [0,6,12,18,24], labels=['Night','Mornin
data1['dep_timezone']

Out[40]:



0            Night
1        Afternoon
2            Night
3          Evening
4          Evening
           ...    
10678      Evening
10679      Evening
10680      Morning
10681    Afternoon
10682      Evening
Name: arr_timezones, Length: 10683, dtype: category
Categories (4, object): ['Night' < 'Morning' < 'Afternoon' < 'Evening']

Solution (Click Here)

Transforming the 'Date_of_Journey' Column

Similar to the departure/arrival time, we will now extract some information from the
'date_of_journey' column, which is also an object type and can not be used for any machine
learning algorithm yet.

So, we will extract the month information first and store it under the 'Month' column name.

Exercise 5
Now, let's create 'Day' and 'Year' columns in a similar way.

Solution (Click Here)

Additionally, we can extract the day of the weak name by using dt.day_name()  function.

In [44]: # Enter your code and run the cell
data1['arr_timezones']= pd.cut(data1.Arrival_Hour,[0,6,12,18,24],labels=['Night','Morn
data1['arr_timezones']

Out[44]:

In [45]: data1['Month']= pd.to_datetime(data1["Date_of_Journey"], format="%d/%m/%Y").dt.month

In [49]: # Enter your code and run the cell
data1['Day'] = pd.to_datetime(data1["Date_of_Journey"], format="%d/%m/%Y").dt.day
data1['Year'] = pd.to_datetime(data1["Date_of_Journey"], format="%d/%m/%Y").dt.year

In [50]: data1['day_of_week'] = pd.to_datetime(data1['Date_of_Journey']).dt.day_name()

In [51]: data1[['Day','Month','Year','day_of_week']]



Day Month Year day_of_week

0 24 3 2019 Sunday

1 1 5 2019 Saturday

2 9 6 2019 Friday

3 12 5 2019 Thursday

4 1 3 2019 Thursday

... ... ... ... ...

10678 9 4 2019 Wednesday

10679 27 4 2019 Saturday

10680 27 4 2019 Saturday

10681 1 3 2019 Thursday

10682 9 5 2019 Thursday

10683 rows × 4 columns

Feature Selection
Here, we will select only those attributes which best explain the relationship of the independent
variables with respect to the target variable, 'price'. There are many methods for feature
selection, building the heatmap and calculating the correlation coefficients scores are the most
commonly used ones.

First, we will select only the relevant and newly transformed variables (and exclude variables
such as 'Route', 'Additional_Info', and all the original categorical variables), and place them into
a 'new_data' data frame.

We will print all of our data1 columns.

Index(['Date_of_Journey', 'Route', 'Dep_Time', 'Arrival_Time', 'Duration',
       'Total_Stops', 'Additional_Info', 'Price', 'Airline_Air Asia',
       'Airline_Air India', 'Airline_GoAir', 'Airline_IndiGo',
       'Airline_Jet Airways', 'Airline_Jet Airways Business',
       'Airline_Multiple carriers', 'Airline_SpiceJet', 'Airline_Trujet',
       'Airline_Vistara', 'Airline_Vistara Premium economy', 'Source_Banglore',
       'Source_Chennai', 'Source_Delhi', 'Source_Kolkata', 'Source_Mumbai',
       'Destination_Banglore', 'Destination_Cochin', 'Destination_Delhi',
       'Destination_Hyderabad', 'Destination_Kolkata', 'Destination_New Delhi',
       'Duration_hours', 'Duration_minutes', 'Duration_Total_mins',
       'Arrival_Hour', 'Arrival_Min', 'Dep_Hour', 'Dep_Min', 'dep_timezone',
       'arr_timezones', 'Month', 'Day', 'Year', 'day_of_week'],
      dtype='object')

Out[51]:

In [52]: data1.columns

Out[52]:

In [53]: new_data = data1.loc[:,['Total_Stops', 'Airline_Air Asia',
       'Airline_Air India', 'Airline_GoAir', 'Airline_IndiGo',



Now we will construct a heatmap() , using the seaborn library with a newly formed data frame,
'new_data'.

       'Airline_Jet Airways', 'Airline_Multiple carriers', 'Airline_SpiceJet',
       'Airline_Trujet', 'Airline_Vistara', 'Source_Banglore',
       'Source_Chennai', 'Source_Delhi', 'Source_Kolkata', 'Source_Mumbai',
       'Destination_Banglore', 'Destination_Cochin', 'Destination_Delhi',
       'Destination_Hyderabad', 'Destination_Kolkata', 'Destination_New Delhi',
       'Duration_hours', 'Duration_minutes', 'Duration_Total_mins', 'Dep_Hour',
       'Dep_Min', 'dep_timezone', 'Price']]

In [54]: plt.figure(figsize=(18,18))
sns.heatmap(new_data.corr(),annot=True,cmap='RdYlGn')

plt.show()



From the heatmap above, extreme green means highly positively correlated features
(relationship between two variables in which both variables move in the same direction),
extreme red means negatively correlated features (relationship between two variables in which
an increase in one variable is associated with a decrease in the other).

Now, we can use the corr()  function to calculate and list the correlation between all
independent variables and the 'price'.

Airline_IndiGo              -0.361048
Destination_Delhi           -0.313401
Airline_SpiceJet            -0.296552
Destination_Hyderabad       -0.230745
Source_Mumbai               -0.230745
Destination_Kolkata         -0.179216
Source_Chennai              -0.179216
Airline_Air Asia            -0.133044
Duration_minutes            -0.124874
Source_Banglore             -0.118026
Airline_GoAir               -0.095146
Airline_Vistara             -0.060646
Dep_Min                     -0.024492
Airline_Trujet              -0.010380
Dep_Hour                     0.006819
Source_Kolkata               0.009377
Destination_Banglore         0.009377
Airline_Air India            0.050346
Airline_Multiple carriers    0.141087
Destination_New Delhi        0.189785
Destination_Cochin           0.270619
Source_Delhi                 0.270619
Airline_Jet Airways          0.416135
Duration_Total_mins          0.506371
Duration_hours               0.508672
Total_Stops                  0.603897
Price                        1.000000
Name: Price, dtype: float64

We can also plot these correlation coefficients for easier visualization.

In [55]: features = new_data.corr()['Price'].sort_values()
features

Out[55]:

In [57]: features.plot(kind='bar',figsize=(10,8))
plt.show()



From the graph above, we can deduct some of the highly correlated features and select only
those ones for any future analysis.

Feature Extraction using Principal Component
Analysis (Optional)

PCA with Scikit-Learn

Dimentionality reduction is part of the feature extraction process that combines the existing
features to produce more useful ones. The goal of dimensionality reduction is to simplify the
data without loosing too much information. Principal Component Analysis (PCA) is one of the
most popular dimensionality reduction algorithms. First, it identifies the hyperplane that lies
closest to the data, and then it projects the data onto it. In this way, a few multidimensional
features are merged into one.



In the following portion of the lab, we will use scikit-learn  library to perform some PCA on
our data. To learn more about scikit-learn  PCA, please visit this documentation.

First, we must scale our data using the StandardScaler()  function. We will assign all the
independent variables to x, and the dependent variable, 'price', to y.

array([[-1.22066609, -0.17544122, -0.44291155, ..., -0.93158255,
         1.65425948, -0.23505036],
       [ 1.74143186, -0.17544122,  2.25778713, ..., -0.39007152,
        -1.30309491,  1.36349161],
       [ 1.74143186, -0.17544122, -0.44291155, ...,  0.97847452,
        -0.60724682,  0.0313733 ],
       ...,
       [-1.22066609, -0.17544122, -0.44291155, ..., -0.91189124,
        -0.78120884, -0.23505036],
       [-1.22066609, -0.17544122, -0.44291155, ..., -0.95127386,
        -0.25932278,  0.29779696],
       [ 1.74143186, -0.17544122,  2.25778713, ..., -0.28176932,
        -0.4332848 ,  1.62991527]])

Once the data is scaled, we can apply the fit_transform()  function to reduce the
dimensionality of the dataset down to two dimensions.

1

array([[-2.87631608, -0.55645701],
       [ 0.31883409,  2.39182774],
       [ 3.05947064, -0.52675097],
       ...,
       [-2.24761482, -0.58799069],
       [-2.69663415, -0.285652  ],
       [ 1.92522086, -1.10484483]])

In [58]: x = data1.loc[:,['Total_Stops', 'Airline_Air Asia',
       'Airline_Air India', 'Airline_GoAir', 'Airline_IndiGo',
       'Airline_Jet Airways', 'Airline_Multiple carriers', 'Airline_SpiceJet',
       'Airline_Trujet', 'Airline_Vistara', 'Source_Banglore',
       'Source_Chennai', 'Source_Delhi', 'Source_Kolkata', 'Source_Mumbai',
       'Destination_Banglore', 'Destination_Cochin', 'Destination_Delhi',
       'Destination_Hyderabad', 'Destination_Kolkata', 'Destination_New Delhi',
       'Duration_hours', 'Duration_minutes', 'Duration_Total_mins', 'Dep_Hour',
       'Dep_Min']]

In [59]: y= data1.Price

In [62]: scaler = StandardScaler()
x=scaler.fit_transform(x.astype(np.float64))
x

Out[62]:

In [65]: print(np.isnan(x).sum())

In [66]: x = np.nan_to_num(x)

In [67]: pca = PCA(n_components = 2)
pca.fit_transform(x)

Out[67]:



Explained Variance Ratio

Another useful piece of information in PCA is the explained variance ratio of each principal
component, available via the explained_variance_ratio_  function. The ratio indicates the
proportion of the dataset's variance that lies along each principal component. Let's look at the
explained variance ratio of each of our two components.

array([0.17545413, 0.12112304])

The first component constitutes 17.54% of the variance and second component constitutes
12.11% of the variance between the features.

Exercise 6 (Optional)
In this exercise, experiment with the number of components to see how many dimensions our
dataset could be reduced to in order to explain most of the variability between the features.
Additionally, you can plot the components using bar plot to see how much variability each
component represents.

array([0.17545413, 0.12112304, 0.09263209, 0.0827907 , 0.06737639,
       0.0527503 , 0.04818182])

In [68]: explained_variance=pca.explained_variance_ratio_
explained_variance

Out[68]:

In [75]: # Enter your code and run the cell
pca = PCA(n_components = 7)
pca.fit_transform(x)
explained_variance=pca.explained_variance_ratio_
explained_variance

Out[75]:

In [78]: # Enter your code and run the cell
with plt.style.context('dark_background'):

    plt.figure(figsize=(6, 4))

    plt.bar(range(7), explained_variance, alpha=0.5, align='center', 
    label='individual explained variance')
    plt.ylabel('Explained variance ratio')
    plt.xlabel('Principal components')
    plt.legend(loc='best')
    plt.tight_layout()



Solution_part1 (Click Here)

Solution_part2 (Click Here)

Choosing the Right Number of Dimensions
Instead of arbitrary choosing the number of dimensions to reduce down to, it is simpler to
choose the number of dimensions that add up to a sufficiently large proportion of the variance,
let's say 95%.

The following code performs PCA without reducing dimensionality, then computes the
minimum number of dimensions required to preserve 95% of the variance.

16

There are 16 components required to meet 95% variance. Therefore, we could set
n_components = 16 and run PCA again. However, there is better way, instead of specifying the
number of principal components you want to preserve, you can set n_components to be a float
between 0.0 and 1.0, indicating the ratio of variance you wish to preserve.

In [79]: pca = PCA()
pca.fit(x)
cumsum = np.cumsum(pca.explained_variance_ratio_)
d = np.argmax(cumsum >=0.95) + 1

In [80]: d

Out[80]:

In [81]: pca = PCA(n_components=0.95)
x_reduced = pca.fit_transform(x)



There is also a graphical way to determine the number of principal components in your analysis.
It is to plot the explained variance as a function of the number of dimensions. There will usually
be an elbow in the curve, where the explained variance stops growing fast. That point is usually
the optimal point for the number of principal components.

Congratulations! - You have completed the
lab

In [ ]: px.area(
    x=range(1, cumsum.shape[0] + 1),
    y=cumsum,
    labels={"x": "# Components", "y": "Explained Variance"}
)


